Over the past several years LED based products have become increasingly popular, and as a result, so too have metal core printed circuit boards. The automobile and lighting sectors have both embraced the technology, as have consumers, given an LED based light can be about 5x cheaper to run than a comparable incandescent unit. Even compact fluorescents have slightly higher operating costs and they cannot compete with the smallest LEDs when it comes to efficient use of space.
Printed circuit board (PCB) fabricators receive dozens of requests for quotations (RFQs) every day. While many requests have moved to more convenient online quoting formats such as our in-house application InstantPCBQuote, many customers still send requests the old way via either files or alternate forms of describing their manufacturing requirements.
Selecting PCB core thickness becomes a problem when a printed circuit board (PCB) fabricator receives a request for quotation of a multilayer design and the material requirements are stated either incompletely or not at all. This sometimes occurs because the combination of PCB core materials used is not critical to performance; if the overall thickness requirement is met, the end user may not care about the thickness or type of each layer.
All customers have questions when it comes to PCB laminate materials, so we took some of the most common questions and put together a helpful FAQ to bring you answers and solutions faster.
The reason printed circuit boards (PCBs) require a surface finish rather than being left as simply bare copper is because while copper is an excellent conductor, leaving it exposed will cause it to oxidize and deteriorate over time. The increased exposure will cause the PCB to fail much sooner than expected.
When you’re in the process of designing a new product, the last thing you are thinking about is the how the product is going to be packaged for transit. However, failure to prepare for and understand electronics packaging regarding how both your components and your finished unit are going to ship is a costly oversight.
I can remember the first ‘incident’ of black pad, years ago, when Epec started to use the electroless nickel immersion gold (ENIG) process. We didn’t notice the issue at the time, as it is not evident on the bare board, but received the complaint from assembly as it was later identified on completed assemblies.
If you’re a designer of RF or microwave printed circuit boards you’ve probably already selected a laminate material that is appropriate to your project, having based your choice primarily on the electrical requirements of the RF circuit, such as signal speed, loss rate etc. Be careful however not to overlook the fact that the specialty materials used in such designs also possess unusual mechanical characteristics; processing is different from that of normal FR4 boards.
The V-score process is the addition of thin, double-sided cuts into printed circuit board (PCB) laminate for the purpose of assisting in the removal of individual parts from the array. The thin cuts which do not go all the way through the material, act as a perforation of the laminate so simple flexing of the laminate, or use of a cutting wheel, will aid in the removal of parts after the assembly process.
Miniaturization in electronics drives the need for both component and printed circuit board designers to work within ever-shrinking footprints in order to remain competitive. The signal routing requirements for many ball grid array (BGA) components are such that through hole via drilling is becoming less and less practical. This makes it necessary in many instances to use blind vias to form interconnections between layer pairs.