When manufacturing printed circuit boards (PCBs), the boards will be classified into specific groups based on the level of quality. Any circuit board developed for IPC Class III has met the strictest requirements levels based on tight minimum tolerances and very high precision standards for mission-critical PCBs that can be used in industries such as aerospace, military, and medical applications. Reaching these specific standards ensures that the PCB will endure a long lifecycle, can withstand up to harsh environments, and will perform at an exceptional level without failure.
A common misconception for ordering PCBs online is that it can only be low technology/low quantities for prototypes, but that is not the case. At InstantPCBQuote™, we have the capabilities for you to order circuit boards up to 16-layer with high-temp materials, blind and buried vias, and with controlled impedance.
As printed circuit boards (PCBs) progressed, requiring their functions to be more and more complex and diverse, the number of layers increased from 1-2 layers, up to 4-30 layers, with 4-12-layer boards being more typical.
When I think of the song, “Through the Years” by Kenny Rogers from 1981 (played at my high school graduation in 1982), I wouldn’t have imagined I would still be in the printed circuit board (PCB) industry. Yes, 1982! Wow. There are several nostalgic “things” about the time spent in the industry that still remind me of my hometown, family, friends, the U.S., my first real job doing something I had never heard of, hoping to make ends meet.
When talking about the world of technology, we often focus on the performance that circuitry and components provide to keep up with the fast-paced electronics we use in commercial businesses and our daily lives. We are achieving higher processor speeds and frequencies that become demanding on present printed circuit boards (PCBs). Yet, we also need to focus on the sizes of the applications that can have an impact on the PCB design.
In 1913, the comic strip (which then led to the phrase of the same name) “Keeping Up with the Joneses” was brought to life in print. Although that comic strip ended in 1940, let’s face it, in every aspect of the phrase, it is still in practice today. In business and as consumers, we look ahead to what is next. From a freshly opened new cell phone or television, we are already counting the days until the next rendition is available.
When talking about the design and manufacturing of printed circuit boards (PCBs), customers mainly focus on the controls and signal frequencies that the PCB will perform for the specific application. Another topic to also take into consideration is the insertion loss.
As printed circuit board (PCB) technology has been on a steady incline for many years, the main focus has been on what else can we make this part do. Add more layers, decrease circuit widths, add more components, buried vias, blind vias, control the impedance – the list of changes in technology is lengthy. As a manufacturer of PCBs, we see the finished design ready to go to production, but is it? Often, we look at a received customer data production and think, “can this part be produced?”
At the conclusion of our webinar, Quick Turns PCBs – Why an Experienced Supply Chain Matters - we had several questions submitted to our presenter, Ed McMahon, CEO at Epec. We have compiled these questions into a readable format on our blog.
The talk about creating high-speed digital circuits is happening across the world due to the development of fifth-generation (5G) cellular communication systems. As technology becomes more advanced, engineers are looking for the right ways to convey signals and frequencies through standard materials that are available today for printed circuit boards (PCBs), as these PCBs need to handle the mechanical and electrical properties required without hindering operational capabilities.