When manufacturing printed circuit boards (PCBs), the boards will be classified into specific groups based on the level of quality. Any circuit board developed for IPC Class III has met the strictest requirements levels based on tight minimum tolerances and very high precision standards for mission-critical PCBs that can be used in industries such as aerospace, military, and medical applications. Reaching these specific standards ensures that the PCB will endure a long lifecycle, can withstand harsh environments, and will perform at an exceptional level without failure.
Shielded cables are ubiquitous across nearly all industries. Not to be confused with armored shielding, which is designed to physically protect a cable, shielded cables are used to safeguard against electromagnetic energy and the negative consequences from signal corruption, blown components, or even a failed qualification test. Cable designers will specify whether a shield is required and its general construction. But just adding a shield to a cable may not be enough to achieve the required performance levels that are anticipated.
A common misconception for ordering PCBs online is that it can only be low technology/low quantities for prototypes, but that is not the case. At InstantPCBQuote™, we have the capabilities for you to order circuit boards up to 16-layer with high-temp materials, blind and buried vias, and with controlled impedance.
Customers requiring batteries for their products or applications have become savvier when it comes to the developmental phase of the battery packs. They understand that by having researched power requirements, dimensions of the pack compartment, battery chemistries, and cabling specifications, the customer can develop more comprehensive design documents. Then, the battery pack manufacturer can use these specifications to get started on the development and tooling stage immediately.
Revision control is the method by which manufacturers and engineers keep individual parts or assemblies documented and tracked. A more simplified definition could be that revision control is a part’s road map. In the world of manufacturing electronics, it is critical that revisions of any product are properly maintained and controlled.
When designing a custom battery pack, a topic that will come up between the manufacturer and the customer deals with the fuel gauge. The battery fuel gauge can be found in a range of everyday devices that we use, such as cell phones and computers. The function of the fuel gauge is to inform the customer on how much state of charge (SoC) and state of health (SoH) is left in the battery. The fuel gauge can predict the remaining capacity by measuring the voltage, battery temperature, and current.
Impedance controlled circuits in a rigid-flex PCB design is a common requirement throughout the industry in a wide range of applications. Having Impedance control, however, does create an additional challenge for designs that have very demanding minimum bend requirements.
At the conclusion of our webinar, Battery Packs for Medical Devices: Requirements and Certification - we had several questions submitted to our presenter, Battery Development Consultant Randy Ibrahim. We compiled these into a readable format on our blog.
When deciding on the types of power to supply equipment requiring high performance, rechargeable batteries are often chosen for several reasons. With rechargeable batteries, users can obtain longer device performance and consistent power. In addition, rechargeable batteries are ideal for devices that are lightweight, such as mobile applications. These devices may have a battery pack that can be taken from off the device, such as the ones on power tools, and placed into a charger that connects to a wall outlet.
When talking about flexible heaters, determining the amount of efficient heat necessary for the application is required. A range of factors impacts generated electrical heat, including the materials that are used, the wattage, the voltage, the size of the heater, and the pattern of the conducive materials within the heater. One of the vital factors in designing a flexible heater revolves around Ohm's Law.