Look around at your desk, work station, or wherever you’re siting while reading this blog post. The odds are favorable there are multiple cables within reach right now! It’s true, everyone needs and uses cables. Not just in one’s personal life, but also in the workplace, in industry, and even in combat.
There remains a misconception that borders on a cultural stigma towards off-brand or knockoff items. Consider your favorite breakfast cereal at your local supermarket as you walk down an aisle lined with name brand cereals strewn with cartoon characters and slogans, you may notice a less expensive version of the same exact cereal a few shelves lower. These off-brand cereals likely taste the same, have identical ingredients, but cost about half as much. Admittedly, my children prefer the name brand cereals, but when replaced with an off-brand equivalent of Special Popcorn Cereal, if I don’t show them the box, they will never know the difference.
Most test engineers agree that if you were to make a list of the major causes of compliance failures for most of the electronic products we use in our daily lives, radiated emissions (RE) would, undoubtedly, be right at the top.
In the world of electronics, oftentimes how a signal is being transmitted from a sender to a receiver is just as important as what is being transmitted in the first place. Certain applications call for incredibly high levels of reliability and resistance to outside electrical interference, so more "traditional" or "common" cables just won't do.
Discrete wire, or lead wire, is the backbone of any interconnect or cable. Within this blog post we break down for you the anatomy of the basic hookup wire and the compositions that can be used as a single unit or grouped together to produce a multi-conductor or multi-pair cable.
Heat shrink tubing, also known as heat shrink, is a shrinkable tube that shrinks radially when exposed to heat. Produced using a two-step process, heat shrink is available in a wide range of materials to suit almost any application. Heat shrink tubing has many useful applications, including to provide electrical insulation to wires, connections, joints, terminals, and splices, as well as bundling loose items such as wires and as a protective covering.
The holiday season is truly an exciting time of the year for many Americans, but inadequate planning for your custom cable assembly can create some less than desirable commotion for your company. Christmas is closing in and manufacturers are already gearing up for the approaching holiday season.
There are many areas to consider when designing and building cost-effective custom cable assemblies. The areas of primarily importance to be reviewed are the raw material selection, ensuring your assembly is designed for ease of manufacturability, choosing the correct connector, and correctly specifying the criteria the assembly should meet or exceed. If all of these areas are optimized correctly in the design stage, you stand the best chance of keeping your manufacturing costs as low as possible.
As custom manufactured cable assemblies have grown in complexity, it has become far more common to see various electronics integrated directly into the finished design. The inclusion of electronics into a cable assembly design can consist of adding a switch, PCB, LED, or a multitude of other components. Once added, these components offer a much higher level of sophistication to the cable assembly while allowing the included electronics the ability to withstand a much more rugged working environment.
EMI (electromagnetic interference) and RFI (radio-frequency interference) are disturbances generated by external sources that impact a cable assembly by degrading the assembly's performance or completely preventing it from functioning. These disturbances can cause problems ranging from an increase in error rates of the signal being transmitted through the assembly to total loss of any electronically readable signal.