The design of a multi-layer PCB (printed circuit boards) can be very complicated. The fact that a design even needs to use more than two layers implies that the required number of circuits will not fit onto just a top and a bottom surface. Even in cases where the circuitry does fit onto two external layers with no problem, the PCB designer may decide to add power and ground planes internally in order to correct a performance shortcoming.
Owing to the prevalence of complex processors, USB devices, and antennas printed directly onto the board surface, more and more PCB designs now require impedance control and testing than ever before. In response to the increased demand, circuit board manufacturers have invested in sophisticated modeling software and testing units, so they are equipped to meet the requirements.
At Epec we work on such a varied and technical catalog of products, so our engineers must be comfortable leveraging every manufacturing technology available to them in order to create solutions in design and production. One of the most important technologies that we use is 3D printing.
Printed circuit boards (PCBs) have become an integral part of everyday modern life, both at work and at home. PCBs were at one time found primarily where you would have expected them to reside inside computers, calculators, televisions, and other such obviously electronic devices, but now they present nearly everywhere.
It is sometimes necessary to have some, or all, of your PCB layout projects done by an outside source. If you’ve never done a layout before, or if you don’t have the tools or experience to take on more complex projects, it is often better to have a professional complete the work.
Working in the manufacturing industry, you’ve probably noticed the letters RoHS or REACH on various documentation or even browsing our website. But, have you ever wondered what these letters stand for or what the certification that comes with them entails?
From controlling condensation on electronics to keeping food warm, flexible heaters provide many advantages to commercial industries such as medical, electronics, aerospace, food and beverage, and refrigeration. Silicone and Kapton® heaters are the most common heaters used due to their flexibility, great thermal transfer, rapid warmup and varying temperature applications.
In my last blog post, I reviewed the 5 why problem-solving method. In this blog post, we will continue this discussion so if you have not seen Part 1, I suggest you read that post first and then come back here.
Manufacturers requiring localized heating for their applications turn to the advantages of flexible heaters that are mounted to components and equipment. These heaters can provide low level or high-level heat at varying temperatures to offer the appropriate thermal transfer based on the applications.
Whether used in the aerospace industry to de-ice equipment, or the food industry to bring ingredients up to a suitable temperature, flexible heaters provide the right amount of generated heat based on the application. These types of heaters can be attached to smooth, bulky and curved equipment in different sizes and functions.