As with many of today’s high-speed rigid circuit board designs, flex and rigid-flex PCB designs also require controlled impedance signals. The impedance vales are the same, typically ranging from 50 ohm single ended up to 120 ohm differential pairs. However, there are differences in how the impedance values are achieved due to the mechanical bend requirements that a flex or rigid-flex circuit board must meet that a rigid PCB does not.
Medical devices are used globally to diagnose health issues and provide life-sustaining care. These devices need to have quality parts and components to operate, including cable assemblies that provide a variety of functions. Due to the nature of these devices and the industry in which they are used, manufacturers must ensure quality management processes are put into place. If a product malfunctions while in use, it could put the patient's health in jeopardy.
When applications and products require heating options, polyimide and silicone rubber flexible heaters are ideal for a wide range of uses. With optimal heat transfer, they can provide the right temperatures for electronics, instrument panels, sensors, medical devices, and food service products.
When talking about the world of technology, we often focus on the performance that circuitry and components provide to keep up with the fast-paced electronics we use in commercial businesses and our daily lives. We are achieving higher processor speeds and frequencies that become demanding on present printed circuit boards (PCBs). Yet, we also need to focus on the sizes of the applications that can have an impact on the PCB design.
When tackling any new project, it’s human nature to focus on the most difficult and uncertain tasks first, while leaving the perceived low-risk and simple activities for the end. When it comes to developing a new product, whether it be for a medical device, commercial widget, or even a mil-aero box build, the initial focus is on the major system elements.
In 1913, the comic strip (which then led to the phrase of the same name) “Keeping Up with the Joneses” was brought to life in print. Although that comic strip ended in 1940, let’s face it, in every aspect of the phrase, it is still in practice today. In business and as consumers, we look ahead to what is next. From a freshly opened new cell phone or television, we are already counting the days until the next rendition is available.
When talking about the design and manufacturing of printed circuit boards (PCBs), customers mainly focus on the controls and signal frequencies that the PCB will perform for the specific application. Another topic to also take into consideration is the insertion loss.
As printed circuit board (PCB) technology has been on a steady incline for many years, the main focus has been on what else can we make this part do. Add more layers, decrease circuit widths, add more components, buried vias, blind vias, control the impedance – the list of changes in technology is lengthy. As a manufacturer of PCBs, we see the finished design ready to go to production, but is it? Often, we look at a received customer data production and think, “can this part be produced?”
At the conclusion of our webinar, Quick Turns PCBs – Why an Experienced Supply Chain Matters - we had several questions submitted to our presenter, Ed McMahon, CEO at Epec. We have compiled these questions into a readable format on our blog.
The talk about creating high-speed digital circuits is happening across the world due to the development of fifth-generation (5G) cellular communication systems. As technology becomes more advanced, engineers are looking for the right ways to convey signals and frequencies through standard materials that are available today for printed circuit boards (PCBs), as these PCBs need to handle the mechanical and electrical properties required without hindering operational capabilities.