Over the past several years there have been several instances where battery suppliers that manufacture the highest technology batteries have run into financial difficulties (think A123, Boston Power) or change their business model and no longer want to supply small/medium volume applications (Panasonic). This has created several problems for OEMs as they have designed these cells and have passed all of the certification testing for UL, EMI, CE and UN DOT 38.3.
What do I get for my tooling dollar? This question (in one form or another) is one that gets asked frequently. Tooling is always a concern for the customer. It’s an added cost which cannot be converted to sales and ultimately, the bottom line.
This blog post provides a quick overview of what is involved in the battery pack potting process. Battery potting can greatly aid in stability and help to optimize the performance of your finished custom battery pack. Potting materials are used to provide mechanical reinforcement to housed-assemblies and to protect components against exposure to harmful chemicals, moisture, mechanical shock and vibrations, and other hazards.
Some additional benefits of using battery potting include low cost shells, hermetic like seal, and good electrical insulation.
As a full service custom battery pack manufacturer, we prioritize providing our customers with the highest quality battery pack assembly while keeping you under budget. Many of the battery packs manufactured by Epec go into mission critical devices, which require nothing short of the highest quality rugged and reliable batteries. In this post we will look at three key aspects of Epec's US manufacturing that enable us to meet and exceed our goals.
This topic is mainly focused on properly shipping lithium ion batteries due to shipping regulations, but could also apply to Ni-MH where appropriate.
It is important to be aware that certain applications will have battery packs that may be exposed to corrosive elements such as acidic, salt, and on occasion conductive substances and fluids. Over time this type of exposure can slowly corrode the PCBA, components, and solder joints. This type of corrosion can cause premature failure, short circuits, and or dangerous conditions that could lead to fire or even an explosion.
When a lithium battery pack is designed using multiple cells in series, it is very important to design the electronic features to continually balance the cell voltages. This is not only for the performance of the battery pack, but also for optimal life cycles.
When designing and manufacturing battery packs, it is important to recognize that there will be limitations when dealing with specific cost and performance parameters. You may encounter circumstances where you will have to increase the cost of your battery pack or decrease aspects of the overall performance. We'll help detail some of those limitations and how to find solutions that help move your project forward.
The old saying “to the victor go the spoils” is now starting to apply in the battery supplier industry. Recently, Panasonic announced that it will no longer be supporting any new battery pack development projects that are not in the electric vehicle (EV) or solar storage space.
Shipping of lithium batteries is a very important process that requires significant investment in training and equipment. In April of 2016, new lithium battery shipping regulations were passed that forbid lithium batteries from passenger aircraft and limited the SOC (state of charge) for any battery shipped via air cargo to 30%.