At the conclusion of our webinar, Dealing With Component Shortages That Impact Battery Packs Designs, we had several questions submitted to our presenter, Randy Ibrahim, Battery Development Consultant at Epec. We have compiled these questions into a readable format on our blog.
Read MoreDesigning a custom battery pack for your application requires figuring out the power specifications. Yet there are several other considerations that dictate the type of battery chemistry to use. In addition to the current, capacity (amp-hours), size requirements, cell configuration, and the number of cells for the battery pack within the application, the voltage must also be determined.
Read MoreManufacturing custom battery packs requires comprehensive input from the customer. A customer offers details regarding the application, the power requirements of the battery, and the type of shelf life for the battery pack. The customer also expects battery testing to occur at the end of production to ensure quality and that the battery will work for the application.
Read MoreCreating a custom battery pack requires understanding the basics of how much energy density the application needs, how to recharge the battery pack, and the shelf-life of the battery. When a customer looks for a customized solution, they are concerned about the development costs. Usually, these development costs are factored into the final price of the product that will be sold to end-users.
Read MoreWhen talking about custom battery packs for portable devices, the most common type mentioned has been lithium-based chemistries. Lithium-based batteries provide high-energy density and a light weight for applications, making them suitable for portable electronics that require long battery life to perform high-speed functions.
Read MoreIt is common to explore different power supply options when designing your applications. However, one that often gets neglected is the differences between the types of battery cells in your portable applications. There are a lot of similarities between battery cells, but also very many differences that make certain cells more efficient than others when it comes to application.
Read MoreThe last 18 months have been some of the most challenging that many of us have had to deal with both personally and professionally. It has often felt like we were riding waves, coming closer to things getting a little more normal, only to have them change radically. Looking forward to the next 18 months, I don’t see those changes getting any easier for us or our industry.
Read MoreBattery power requirements involve many factors. Beyond having enough power to run the application, customers also take into consideration battery capacity, charging/discharging rates, and environmental conditions that could impact the battery's functions. Before the battery packs development starts, there are other aspects about the power requirements that need to be evaluated. These aspects may impact the size of the battery, if there are any logistical restrictions that come into play and what types of certifications are required.
Read MoreApplications with high-power needs and complex systems may use lithium batteries to operate. Lithium batteries can pack a high-energy density into smaller pack sizes, making them lightweight and small enough to be used in common everyday products such as cell phones, laptops, tablets, and hoverboards. However, the battery's chemistry can create safety hazards when not being constantly monitored.
Read MoreCustomers requiring batteries for their products or applications have become savvier when it comes to the developmental phase of the battery packs. They understand that by having researched power requirements, dimensions of the pack compartment, battery chemistries, and cabling specifications, the customer can develop more comprehensive design documents. Then, the battery pack manufacturer can use these specifications to get started on the development and tooling stage immediately.
Read More










